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Abstract

The present study aimed to evaluate the effects of zinc amino acid complexes on growth performance, tissue zinc concentra-
tion, and muscle development in broilers. A total of 504 day-old male arbor acres broilers were randomly divided into seven
treatments (fed with a basal diet or a basal diet supplemented with 120 mg kg™' Zn as ZnSO,, 30, 60, 90 or 120 mg kg™! Zn
as ZnN, or 30 mg kg~! Zn as ZnA separately). Each group had six replicates, with 12 birds per replicate. The results showed
that the addition of 60 mg kg~! ZnN significantly increased (P < 0.05) the average daily gain (ADG) and breast muscle
percentage of broilers. Zinc concentration of ZnN and ZnA added groups were higher than (P <0.05) that in the Zn sulfate
group under the same addition dose. Except for the 30 mg kg~' ZnN group, the muscle fiber diameter and cross-sectional
area (CSA) were significantly increased (P <0.05) in the ZnN addition groups. Compared with the basal diet group, adding
ZnN significantly increased (P <0.05) the expression of MTOR, MYOD, and MYOG at day 21 and decreased (P <0.05)
the expression of Atrogin-1. The expression levels of AKT, MTOR, P70S6K, and MYOD were increased at day 42, while
the expression levels of MuRF1 and Atrogin-1 were decreased. Adhesion, backbone regulation of actin, MAPK, mTOR,
and AMPK were significantly enriched as indicated by KEGG pathway enrichment analysis. In conclusion, zinc amino acid
complexes could improve growth performance, tissue zinc concentration, and regulate breast muscle development.
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Introduction for Zn in the diet was 100 mg/kg, which was 2.5 fold than
NRC (1994) [6] at 40 mg/kg for poultry. However, due to
the low absorption and bio-availability of inorganic miner-

als, a resultant increase of minerals in excreta raised con-

Zinc (Zn) is an essential trace mineral for livestock that
serves as a cofactor of various enzymes and transcription

factors in the body [1, 2]. Dietary zinc supplementation has
been revealed to improve broilers’ growth performance,
meat quality, and immune response [3, 4]. Excess minerals
are usually provided in commercial broiler production to
maximize their performance. The recommendation of the
Cobb Broiler Performance and Nutrition Supplement [5]
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cerns about their detrimental effect on the environment [7,
8]. Therefore, finding alternatives to inorganic minerals is
essential to improve growth performance and reduce mineral
excretion.

The organic trace elements were gradually used in ani-
mal feed because they have a higher absorption rate and
bio-availability than inorganic trace minerals [9, 10]. In
organic zinc sources, zinc is bound to different ligands,
including glycinates, amino acid complexes, polysaccha-
ride complexes, and propionates [11]. Zinc amino acid com-
plexes have been reported to improve growth performance,
response to pathogens, and reproduction [12]. Given the
increased bioavailability of organic sources, it is a prom-
ising alternative to replace inorganic zinc additives below
industry standard and reduce zinc excretion without damp-
ening the broiler’s growth performance. However, different
ligands sources, like feather meal or soybean protein, water
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solubility [9], and chelating strength [13], affected the out-
come of zinc amino acid complexes in feed. ZnN is a new
source of amino acid organic trace element supply. It is pro-
duced by the enzymatic digestion of defatted soy protein by
complex proteases to form dipeptides and tripeptides, which
are then chelated with zinc ions. The chelation rate of ZnN
is greater than or equal to 98%, and the chelation strength
Oy value is 637. This supplement can provide animals with
trace elements that are easier to absorb and utilize in a form
that is closer to nature.

In addition, studies have shown that the addition of zinc
amino acid complexes can improve the antioxidant capacity,
meat color, and water retention of muscles, thus improv-
ing their meat quality [14—16], but the possible mechanisms
regarding the regulation of zinc on muscle development
remain to be investigated. Therefore, the aim of this study
was to investigate the effect of dietary supplementation with
zinc amino acid complex on muscle development in broilers
and its potential mechanisms.

Materials and Methods
Experimental Design, Animals, and Diets

A total of 504 day-old male arbor acres (AA) broilers were
randomly divided into seven treatments (fed with a basal
diet or a basal diet supplemented with 120 mg kg™' Zn as
ZnS, 30, 60, 90 or 120 mg kg~ Zn as ZnN, or 30 mg kg~
Zn as ZnA separately). Each group had six replicates, with
12 birds per replicate. ZnS is zinc sulfate, containing 34.5%
zinc. ZnN and ZnA were zinc amino acid complexes pro-
vided by the Beijing Deyuanshun Biotechnology Co. Ltd.

ZnN, named Numine®-Zn, is zinc chelated with a variety

of amino acids (including methionine, glycine, and threo-
nine) from enzymatic hydrolyzed soy protein in a 1:1 molar

ratio. In contrast, ZnA is zinc chelated with methionine
from hydrolyzed feather meal. The zinc content of ZnN
and ZnA are 15% and 12%, respectively. The experiment
lasted for 42 days. Birds were fed mash diets to meet the
nutrient requirements according to AA broiler recommen-
dations (Table 1) during the starter (1-21 days) and grower
(2242 days) periods, respectively. The analyzed Zn levels in
the feed are shown in Table 2. All chicks were raised follow-
ing the AA broiler management guidelines. The environment
was kept at 34 °C for the first week, gradually dropping to
24 °C from the fourth week onwards. Feed and water were
provided ad libitum during the whole period.

Sample Collection

At 21 and 42 days, one male broiler from each replicate was
randomly selected for slaughter performance measurement,
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Table 1 Composition and nutrient levels of basal diets (as-fed basis)

Items Starter 1-21d Grower 22-42 d

Diet composition, %
Corn 56.51 62.21
Soybean meal 35.30 29.20
Limestone 1.52 1.60
Soybean oil 4.50 4.90
Calcium phosphate 1.00 1.00
L-Lysine 0.35 0.30
Methionine 0.16 0.13
L-Threonine 0.06 0.06
Salt 0.30 0.30
Premix' 0.30 0.30
Total 100.00 100.00

Nutrient levels?
ME MlJ/kg 12.72 13.02
CP, % 20.65 18.28
Lys, % 1.27 1.09
Met, % 0.47 0.41
Ca, % 0.90 0.91
TP, % 0.54 0.52

Provided per kilogram of diet: vitamin A, 12,000 IU; vitamin D,
2500 IU; vitamin E, 20.0 IU; vitamin K3, 3.0 mg; vitamin B, 3.0 mg;
vitamin B,, 8.0 mg; vitamin B¢, 7.0 mg; vitamin B,, 0.03 mg; pan-
tothenic acid, 20.0 mg; nicotinic acid, 50.0 mg; biotin, 0.1 mg; folic
acid, 1.5 mg; iron, 60 mg; copper, 17.5 mg; iodine, 1.5 mg; selenium,
0.3 mg; manganese, 124 mg

The nutrient levels were calculated values

Table 2 Analyzed zinc (Zn) concentrations in experimental diets

Treatment Supplemented Zn,  Analyzed Zn contents, mg/
mg/kg kg
dOto21 d 22 to 42
CON 0 35.21 38.25
ZnN-30 30 68.35 69.75
ZnN-60 60 96.95 98.50
ZnN-90 90 126.40 133.87
ZnN-120 120 155.49 159.00
ZnS 120 157.28 158.25
ZnA 30 67.56 70.75

ZnS is ZnSO,-H,0; ZnN is zinc chelated with a variety of amino
acids (including methionine, glycine, and threonine) from enzymatic
hydrolyzed soy protein in a 1:1 molar ratio; ZnA is zinc chelated
with methionine from hydrolyzed feather meal. CON group, basal
diet; ZnN-30, 60, 90, and 120 groups, basal diet with 30, 60, 90, and
120 mg zinc kg~! added as ZnN; ZnS group, basal diet with 120 mg
zinc kg~! added as ZnSO,-H,0; ZnA group, basal diet with 30 mg
zinc kg™! added as ZnA

and another was selected for meat quality measurement and
tissue sampling. The breast muscle, thigh muscle, tibia,
pancreas, liver, and jejunum were removed and stored in a
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freezer at — 20 °C immediately to determine tissue zinc con-
centration. The right breast muscle was removed and fixed
with 4% formaldehyde solution for morphometry. Another
molecular sample of breast muscle was stored at — 80 °C for
quantitative real-time polymerase chain reaction (QRT-PCR)
analysis.

Growth Performance

Male broilers in each replicate were weighed at days 0, 21,
and 42 after a 12-h fast to calculate the average daily gain
(ADG). The difference between the offered and residual feed
for each replicated at each period was recorded to estimate
the average daily feed intake (ADFI). Based on ADG and
ADFI data, the feed-to-gain ratio (F: G) was calculated.

Measurement of Zinc Concentration

Zinc content in the tissues and feed was determined
according to the methods of Meng et al. [17]. Each tissue
sample of approximately 0.5-3 g (accurate to 0.001 g) was
weighed, and it was digested with 10 mL of nitric acid and
perchloric acid mixture (9:1) overnight. Then, the mix-
ture was heated until the digestive liquid became colorless
and transparent or slightly yellow, accompanied by white
smoke. After cooling, ultrapure water was used to set the
volume to a constant value, and the sample was mixed well
before measurement. Zinc levels were determined using
an A3 flame atomic absorption spectrometer (A3F, Persee,
Beijing, China).

Slaughter Performance

At the end of the experiment (42 days of age), the selected
birds from each treatment were processed to calculate the
total evisceration rate, half evisceration rate, slaughter rate,
breast muscle rate, thigh muscle rate, and abdominal fat rate
of broilers.

Meat Quality

The meat samples were taken from each broiler’s left breast
and thigh muscles. Meat quality were determined refer-
ence to Xie et al. [18]. The pH value of the breast and thigh
muscles was measured using a pH meter (Mettler Toledo,
Zurich, Switzerland) 45 min and 24 h after slaughter during
storage at 4 °C. Other meat quality indexes were determined
within 45 min after euthanasia. The luminance (L*), redness
(a*), and yellowness (b*) of the thigh muscle were measured
using a colorimeter (Minolta, Tokyo, Japan). The shear force
was measured using a digital tenderness meter (C-LM3B,
Tenovo, Beijing, China). The drip loss was measured using
a pressure gravimetric method [19].

Muscle Fiber Characteristics

Muscle fiber morphological analyses were carried out simi-
larly to the procedures described by Shah M et al. [20, 21].
For morphometric analysis, the breast muscle of birds was
cut and preserved in 4% paraformaldehyde before being
dehydrated, embedded in paraffin, sectioned, and stained
with hematoxylin and eosin. The muscle fibers” diameter and
cross-sectional area (CSA) were observed with an Olympus
AX70 microscope (Olympus Corporation, Tokyo, Japan).
All morphological parameters were measured using the
ImageJ Software Package (National Institutes of Health,
Bethesda, MD, USA).

RNA Isolation and Real-time Quantitative PCR

The total RNA of the breast muscle was isolated using the
AG RNAex Pro reagent (Accurate Bioengineering Co., Ltd.,
Hunan, China). The concentration and purity of extracted
RNA were measured using a NanoDrop ND-1000 spectro-
photometer (Thermo Fisher Scientific, USA). All primers
were obtained from Sangon Biotech Co., Ltd. (Shanghai,
China). The primer information of serine/threonine kinase
(AKT), mammalian target protein of rapamycin (MTOR),
ribosomal protein S6 kinase 1 (P70S6K), myogenic deter-
mining factor (MYOD), myogenin (MYOG), muscle ring
finger 1 (MuRF1), muscle atrophy f-box (Atrogin-1), cat-
alase (CAT), superoxide dismutase (SOD), glutathione
peroxidase (GPX), and p-actin genes are listed in Table 3.
Quantitative RT-PCR reactions amplified total cDNA in a
LightCycler 384 system with SYBR Green I Master. The
mRNA levels were calculated using the 2724¢T method.

Transcriptome

The total RNA of breast muscles quality was measured by a
quantitative NanoDrop 2000 spectrophotometer using 1.5%
agarose gel electrophoresis. After qualified RNA detection,
the library was constructed with TruSeq Stranded mRNA
LT RNA library preparation kit (Illumina, San Diego, USA).
The library quality was then evaluated using the Nano-
Photometer, Qubit2.0 Fluorometer and Agilent 2100 bio-
analyzer and then sequenced using Illumina HiSeq™ 2500
by the Genedenovo Biotechnology Co., Ltd. The FastQC
(v0.11.4) [22] was used to check the raw data quality. The
rRNA mapped reads were removed using the Bowtie2 (Ver-
sion 2.2.8) [23] tool. HISAT2-2.2.4 software [24] was used
to align the clean reads to the reference genome. Sample
repeatability was tested via principal component analysis.
Then, RNA differential expression analysis was performed
by the DESeq?2 [25] software between two different groups.
The genes with the parameter of P <0.1 and Ilog2FCI> 1.5
were considered differentially expressed genes. Kyoto
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Table 3 Sequence of primers

B Genes Primer sequence (5'— 3') GenBank no Product
for real-time PCR size
(bp)
B-actin F:GCCCTGGCACCTAGCACAATG NM_205518.2 172
R:CTCCTGCTTGCTGATCCACATCTG
AKT F:CATTCCCGCCATTATGAATGAAGTA AF039943 130
R:CTTGTAGCCAATGAATGTGCCATC
MTOR F:GAAGTCCTGCGCGAGCATAAG XM_417614 92
R:TTTGTGTCCATCAGCCTCCAGT
P70S6K F:ATTCGATCACCTCGCAGATTCATAG NM_001030721 111
R: AGTATTTGATGCGCTGGCAGAAG
MYOD F:ATCACCAAATGACCCAAAGC NM_204214 149
R:GGGAACAGGGACTCCCTTCA
MYOG F:GGAGGCTGAAGAAGGTGAA NM_204184 151
R:TGCTGGTTGAGGCTGCTGA
MuRF1 F:CGACATCTACAAGCAGGAGT XM_424369 163
R:TGAGCACCGAAGACCTT
Atrogin-1 F:CACGGAAGGAGCAGTATGGT NM_001030956 124
R:AGGTCTCTGGGTTGTTGGCT
CAT F:GTTGGCGGTAGGAGTCTGGTCT NM_001031215.1 182
R:GTGGTCAAGGCATCTGGCTTCTG
SOD F:TTGTCTGATGGAGATCATGGCTTC NM_205064.2 98
R:TGCTTGCCTTCAGGATTAAAGTGA
GPX F:CAAAGTTGCGGTCAGTGGA NM_001163245.2 136

R:AGAGTCCCAGGCCTTTACTA

P-actin beta, AKT serine/threonine kinase, MTOR mammalian target protein of rapamycin, P70S6K ribo-
somal protein S6 kinase 1, MYOD myogenic determining factor, MYOG myogenin, MuRFI muscle ring
finger 1, Atrogin-1 muscle atrophy f-box, CAT catalase, SOD superoxide dismutase, GPX glutathione per-

oxidase, F forward, R reverse

Encyclopedia of Genes and Genomes (KEGG) is the major
public pathway-related database. Pathway enrichment analy-
sis identified significantly enriched metabolic pathways or
signal transduction pathways in DEGs compared with the
whole genome background.

Statistical Analysis

All statistical analyses were performed using the SPSS
(25.0, Chicago, IL,USA) software, and values are shown as
means + SD. Significant differences among different treat-
ment groups were evaluated by one-way analysis of variance
(ANOVA) followed by the Duncan’s multiple-range test.
Then, the linear and quadratic effects of ZnN levels were
analyzed using regression analysis in SPSS 25. P <0.05 was
considered statistically significant.

Results
Growth Performance

There were no significant differences (P> 0.05) in ADG,
ADFI, and F:G among all treatments at the starter stage.
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During the grower phase, the ADG of broilers from the 30,
60, or 90 mg kg~' ZnN supplemented groups was higher
than (P <0.05) the CON group, while the addition of ZnS,
ZnA, or 120 mg kg~! ZnN did not affect (P> 0.05) broiler
ADG compared to the CON group. However, only the dos-
age of 60 or 90 mg kg~! supplemented in the diet signifi-
cantly increased (P <0.05) the ADG of the broiler through-
out the whole feeding trial. Additionally, supplementation
with ZnN, ZnS, or ZnA all reduced (P <0.05) the F:G during
the grower phase and the whole experimental period relative
to the CON group, while there were no detectable differ-
ences (P>0.05) among ZnN, ZnS, or ZnA groups (Table 4).

Tissue Zinc Concentration

ZnN supplementation increased (P < 0.05) the zinc concen-
tration in all analyzed tissue linearly at 21 days and 42 days.
Except for the 30 mg kg™' ZnN group, other ZnN groups
showed a significant increase (P <0.05) in tissue zinc con-
tent compared to the CON group. Moreover, compared with
the ZnS group, dietary supplementation with 120 mg kg™
ZnN improved (P <0.05) the zinc deposition in the pan-
creas at 21 days and in the pancreas, tibia, and jejunum at
42 days. Meanwhile, broilers in the ZnA group had a higher
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(P <0.05) zinc content in the tibia at 21 days and in the
breast muscle at 42 days than broilers in the ZnN-30 group,
but there were no significant differences (P> 0.05) in other
tissue zinc contents between the two groups (Table 5).

Slaughtering Performance

There were no significant differences (P> 0.05) in dress-
ing percentage, full evisceration rate, half evisceration rate,
thigh percentage, and abdominal fat percentage of broilers
among treatments. In contrast, the breast muscle percent-
age of broilers in the ZnN-60 and ZnA groups significantly
increased (P <0.05) at 42 days of age compared with the
CON group (Table 6).

Meat Quality

There were no significant differences (P >0.05) observed in
b* value, pHys,,in, PHoap» shear force, or drip loss percentage
in breast muscle and thigh muscle of broilers at 42 days.
However, compared with the CON group, dietary addition
of ZnA or 60 mg kg™!, 90 mg kg™!, and 120 mg kg™! ZnN
significantly decreased (P < 0.05) the L* value of breast and
pressure loss percentage of the thigh, while supplemented
with ZnA, other than ZnN and ZnS, improved (P <0.05) the
a* value of breast. Also, ZnA or 30 mg kg™!, 60 mg kg~!,
and 120 mg kg~! ZnN supplementation decreased (P <0.05)
the L* value of the thigh at 42 days (Table 7).

Breast Muscle Antioxidant

The CAT and GPX expression levels showed no significant
differences (P > 0.05) among treatments on days 21 and 42.
At 21 days of age, both dietary ZnN and ZnA treatments, but
not ZnS, upregulated (P <0.05) the expression of SOD in
the breast muscles relative to the CON group. However, only
60 mg kg~!, 90 mg kg!, or 120 mg kg~!, not 30 mg kg~!,
ZnN supplementation improved (P <0.05) the SOD expres-
sion at 42 days (Table 8).

Muscle Fiber Characteristics in The Breast

Compared with the CON group, except for the ZnN-30
group, the diameter of the breast muscle fibers of the broil-
ers in other groups was significantly increased (P < 0.05)
at day 21. At day 42, the diameter and cross-sectional area
(CSA) of muscle fibers in all treated groups were signifi-
cantly increased (P <0.05) compared with the CON. In
addition, compared with the ZnS group, the diameter of
myofibers in ZnN-30, ZnN-60, ZnN-90, and ZnA groups
was significantly increased (P <0.05), and the CSA of
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myofibers inZnN-60 and ZnN-90 group were also signifi-
cantly increased (P <0.05) and showed a quadratic effect
(Table 9; Fig. 1).

Expression Levels of Muscle Fiber Relative Genes
in the Breast

Compared with the CON group, dietary ZnN treatments
upregulated the MYOD and MYOG expression in breast
muscle at day 21, but only dietary addition of 60 mg kg™!,
90 mg kg™, and 120 mg kg~! of ZnN improved (P < 0.05)
the MTOR expression in breast muscle. Broilers fed the
diet with 120 mg kg~! ZnN had a higher (P <0.05) expres-
sion of MYOG than broilers in the ZnS group. Further-
more, there was no significant difference (P > 0.05) in
gene expression for AKT, P70S6K, and MuRF1 in the
breast muscle among treatments at 21 days of age. At day
42, ZnN treatments significantly increased (P <0.05) the
expression of AKT, MTOR, P70S6K, and MYOD and
decreased (P < 0.05) MuRF1 and Atrogin-1 expression
compared to the CON group. There was no significant
difference (P > 0.05) in MTOR, P70S6K, MuRF1, and
Atrogin-1 among the ZnN groups, ZnS group, and ZnA
group. However, compared with the ZnS group, dietary
ZnN treatments, except the ZnN-30 group, improved
(P <0.05) AKT expression, while only 60 or 90 mg kg~!
ZnN in the diet increased P70S6K expression (Table 10).

Transcriptome of the Breast Muscles

Breast muscle samples from CON, ZnS, and ZnN-60
were classified according to principal component analysis
(PCA). As can be seen from the figure, there are differ-
ences between the CON, ZnS, and ZnN-60 groups (Figs. 2
and 3).

Genes screened for P <0.1 and llog2FCI> 1.5 were sig-
nificantly differentiated, as seen from the volcano plot.
In the starter stage, ZnS vs. CON, ZnN-60 vs. CON, and
ZnN-60 vs. ZnS, there were 1944, 1772, and 1494 dif-
ferential genes, respectively, of which 1772, 1166, and
634 differential genes were upregulated and 172, 328, and
2015 were downregulated. In the grower stage, ZnS vs.
CON, ZnN-60 vs. CON, and ZnN-60 vs. ZnS, there were
857, 2354, and 1717 differential genes, respectively, of
which 666, 2101, and 1295 differential genes were upregu-
lated and 191, 253, and 422 were downregulated. KEGG
pathway analysis revealed that signaling pathways such as
adhesion, regulation of actin cytoskeleton, biosynthesis of
amino acids, growth hormone synthesis, MAPK, mTOR,
Hedge, and AMPK signaling pathways were significantly
enriched (Figs. 2 and 3).
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M. Ma et al.

Table 6 Effect of dietary supplementation with zinc amino acid complexes on slaughter performance of broilers

@ Springer

P-value

Group

Item

Linear Quadratic

ZnN-30 ZnN-60 ZnN-90 ZnN-120 ZnS ZnA ANOVA

CON

0.247
0.245

0.799
0.449

0.802
0.536

90.62+1.43
81.56+1.70
70.27+2.12

91.27+1.26
82.55+1.40

90.18 +4.10
80.84+4.58

91.92+1.08
83.57+1.48

91.81+1.07
82.93+1.26

91.54+1.05
82.95+1.34

91.00+3.15
82.75+3.34
72.53+3.20
28.01+2.26b
22.03+1.43

Dressing percentage, %

71.39+1.41

69.66+4.90

71.96 +1.54

72.54+1.92

72.71+1.17

Full evisceration rate, %

0.180
0.384

0.127
0.039

0.299
0.027

31.00+£1.45a

21.20+1.27

29.79+1.73ab
21.27+2.33

30.01 +2.69ab

31.09+1.28a
21.39+1.95

27.97+0.81b

20.27+1.80

Half evisceration rate, %

29.59+1.97ab
21.32+1.47

21.35+1.63

Breast percentage, %

0.679 0.245

0.774
0.163

1.47+0.26

1.88+0.34

1.53+0.34

Thigh percentage, %

0.332

0.742

1.92+0.32 1.55+0.36 1.53+0.47

1.43+0.48

Abdominal fat yield, %

a—b: Means within a row with different letters are significantly different (P <0.05) by one-way ANOVA. Linear and quadratic refer to statistical analyses performed with CON, ZnN-30, ZnN-60,

ZnN-90, and ZnN-120 groups. ZnS is ZnSO,-H,0; ZnN is zinc chelated with a variety of amino acids (including methionine, glycine, and threonine) from enzymatic hydrolyzed soy protein in

a 1:1 molar ratio; ZnA is zinc chelated with methionine from hydrolyzed feather meal. CON group, basal diet; ZnN-30, 60, 90, and 120 groups, basal diet with 30, 60, 90, and 120 mg zinc kg™

added as ZnN; ZnS group, basal diet with 120 mg zinc kg™! added as ZnSO,-H,0; ZnA group, basal diet with 30 mg zinc kg~' added as ZnA

Discussion

Growth performance is generally regarded as a primary
indicator for evaluating the nutritional requirements of
broilers and is highly valued by producers [26]. In the
present study, ZnN supplementation showed a beneficial
effect by increasing ADG and reducing F:G ratio in the
diet. Consistent with our results, previous studies demon-
strated that adding various forms of zinc to broiler diets
can effectively increase ADG and reduce F:G ratio in
broilers [4, 12]. The reason may be that zinc is a part of
several enzymes involved in the metabolism of protein,
fat, carbohydrates, and nucleic acids and has physiological
functions to promote growth [1, 2].

The source and level of zinc in the diet may directly
affect the deposition of zinc in broilers’ tissues. Our study
findings were that the amount of organic zinc deposition
was higher than that of inorganic zinc at the same addition
dose, and the contents of zinc in the tissues of broilers
increased linearly with the ZnN addition level. In addition,
in response to zinc deposition in all tissues, tibial zinc
deposition was the largest, followed by the pancreas, indi-
cating that tibial zinc content is a better indicator for eval-
uating zinc bioavailability. This result is consistent with
the reports of Hu et al. and Kong et al., that organic zinc is
more favorable for deposition than inorganic zinc in vivo,
and tibial zinc content is a sensitive indicator to evaluate
zinc bioavailability [27, 28]. The reason may be that amino
acid chelated trace elements are mainly absorbed by the
amino acid or peptide transport system, characterized by
high transport speed, low energy consumption, and dif-
ficult carrier saturation [10].

The color of meat is the intuitive performance of mus-
cle. Buyers are more motivated to consume vividly colored
meat products. The change in a* value is mainly deter-
mined by the content and presence of pigments (myoglobin
and hemoglobin) in the muscle, with a* value proportional
to meat quality and b* and L* values inversely proportional
to meat quality. Our results showed that dietary supple-
mentation of ZnN increased the a* value of thigh muscle
and decreased the L* value of breast and thigh muscle. The
reason may be that it can reduce muscle oxidation and the
conversion of red myoglobin to brown myoglobin, which
improves flesh color [29]. In addition, zinc is a cofactor
of Cu,Zn-superoxide dismutase (Cu/ZnSOD), which can
enhance the body’s ability to clear ROS by increasing
the activity of SOD. In the present study, the supplemen-
tation of ZnN could increase the expression of SOD in
breast muscle, improve their antioxidant capacity, and thus
maintain meat color. Other studies have proved that the
hydrolysis and oxidation of proteins can directly affect the
water-holding capacity of muscle tissue [30]. Our results
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Fig. 1 Hematoxylin and eosin
staining of breast muscle of
broilers at 21 and 42 days of
age (40x and 400 X). ZnS

is ZnSO,-H,0; ZnN is zinc

chelated with a variety of amino CON
acids (including methionine,
glycine, and threonine) from
enzymatic hydrolyzed soy pro-
tein in a 1:1 molar ratio; ZnA is
zinc chelated with methionine
from hydrolyzed feather meal. ZnN-30
CON group, basal diet; ZnN-30,
60, 90, and 120 groups; basal
diet with 30, 60, 90, and 120 mg
zinc kg_1 added as ZnN; ZnS
group, basal diet with 120 mg
zinc kg™! added as ZnSO,-H,0; ZnN-60
ZnA group, basal diet with
30 mg zinc kg~! added as ZnA
ZnN-90
ZnN-120
ZnS
ZnA

showed that ZnN could reduce protein loss by reducing the
pressure loss percentage of the thigh. Similarly, Piotr Satek
[31] found that zinc methionine chelate can improve meat
color, increase muscle retention water, reduce drip loss, and
thus, improve meat quality.

Meat production performance is one of the critical indi-
cators to evaluate the economic value of poultry. In the pre-
sent study, ZnN supplementation in the diet could increase
broilers’ ADG and breast muscle percentage. Therefore, we
speculated that ZnN might achieve the above experimental
results by improving the skeletal muscle development of
broilers. Similar studies also found that zinc supplementa-
tion in broiler diets can improve the slaughter rate and breast
muscle rate of broilers [9, 32], which may be related to zinc
promoting skeletal muscle development by activating insulin
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signaling cascade and regulating protein metabolism [27, 33].
Skeletal muscle growth can be divided into two stages: prolif-
eration and hypertrophy. Proliferation refers to the increase in
the number of myoblasts during the embryonic period, which
proliferate and differentiate into multinuclear muscle tubes
and then form muscle fibers [34]. Hypertrophy refers to the
enlargement of muscle fibers when the number of muscle
fibers is unchanged, and the enlargement of muscle fibers is
determined by the diameter of muscle fibers [35]. In the pre-
sent study, adding ZnN to the diet increased the breast muscle
fiber diameter and CSA of broilers. This result is similar to
Gao et al., that adding zinc to the maternal diet can increase
the yield and width of muscle fibers of offspring, indicating
that zinc can promote the development of breast muscle by
promoting the development of muscle fibers [36].

@ Springer
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Fig. 2 Effect of different dietary zinc sources on breast muscle tran-
scriptome of 21-day-old breast muscle. A PCA cluster analysis of
transcriptome samples; B volcano plot of differential genes; C KEGG
pathways enriched by differential genes. ZnS is ZnSO,-H,0; ZnN is
zinc chelated with a variety of amino acids (including methionine,
glycine, and threonine) from enzymatic hydrolyzed soy protein in a

The growth and differentiation of skeletal muscle cells are
regulated by various factors, among which myogenic regula-
tory factors (MRFs) play a critical role in muscle develop-
ment. The MRF family includes myogenic differentiation
antigen (MYOD) and myogenic cytokine (MYOG), Myf5
and MRF4. Among them, MYOD and Myf5 regulate the
development and differentiation from satellite cells to myo-
blasts, promoting the proliferation of myoblasts [37]. MYOG
and MRF4 are expressed in the late stage of muscle develop-
ment and are involved in regulating the formation of muscle
fibers, which can jointly regulate the differentiation of mus-
cle cells [38, 39]. In the present study, adding ZnN to the
diet increased the expression levels of MYOD and MYOG,
and promoted the development and regeneration of skeletal
muscle. Muscle development is also a net result of protein
synthesis and catabolism, and the growth and development
of skeletal muscle can be better reflected through the depo-
sition state of muscle tissue protein [40]. Postnatal muscle
fiber size increases only when the rate of protein synthesis
is higher than the rate of protein degradation [34]. Among
them, mammalian target protein of rapamycin (mTOR) sign-
aling pathway [41] and ubiquitin proteasome system (UPS)
[42] are critical pathways for regulating protein synthesis
and degradation, respectively, and are essential for muscle

CON vs ZnN-60

ZnS vs ZnN-60

1:1 molar ratio; ZnA is zinc chelated with methionine from hydro-
lyzed feather meal. CON group, basal diet; ZnN-30, 60, 90, and
120 groups, basal diet with 30, 60, 90, and 120 mg zinc kg‘1 added
as ZnN; ZnS group, basal diet with 120 mg zinc kg™' added as
ZnSO,-H,0; ZnA group, basal diet with 30 mg zinc kg™! added as
ZnA

growth and development. Akt is a serine/threonine kinase
that can be activated by different nutrients and growth fac-
tors and leads to the activation of its downstream kinase
mTOR [41, 43]. Activation of the mTOR pathway and its
downstream target gene P70S6K is necessary to regulate
skeletal muscle fiber size to activate protein synthesis [41,
44]. Trendelenburg [45] demonstrated that the Akt/mTOR/
p70S6K pathway mediated myoblast differentiation and
hypertrophy in myotubule promoted muscle growth. In the
present study, we found that addition of ZnN increased the
expression levels of AKT, MTOR, and P70S6K, indicating
that ZnN can promote protein synthesis through Akt/mTOR/
p70S6K pathway.

Meanwhile, protein degradation is also essential for regu-
lating muscle mass [35]. UPS is a vital protein degradation
system in eukaryotes, and studies have shown that it plays an
important role in the development of muscle atrophy [46, 47].
Atrogin-1 and MuRF]1 are the most characteristic E3 ubiquitin
ligases in skeletal muscle, mediating protein ubiquitination
and targeting it for 26S proteasome degradation. Thus, UPS
may affect skeletal muscle development by regulating protein
degradation [48]. Previous studies of skeletal muscle in differ-
ent animals have shown that mRNA levels of Atrogin-1 and
MuRF1 are significantly increased, while the muscle weight
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Fig. 3 Effect of different dietary zinc sources on breast muscle tran-
scriptome of 42-day-old breast muscle. A PCA cluster analysis of
transcriptome samples; B volcano plot of differential genes; C KEGG
pathways enriched by differential genes. ZnS is ZnSO,-H,0; ZnN is
zinc chelated with a variety of amino acids (including methionine,
glycine, and threonine) from enzymatic hydrolyzed soy protein in a

of animals is significantly decreased [49, 50]. In the present
study, we found that the addition of ZnN decreased the expres-
sion levels of Atrogin-1 and MuRF]1. Therefore, ZnN may
promote breast muscle development by regulating the Akt/
mTOR/p70S6k and UPS pathways to promote protein synthe-
sis rather than decomposition. However, Akt/mTOR/p70S6K
are protein kinases whose expression levels may require fur-
ther study by western blotting phosphorylated protein levels
or other molecular assays.

To further explore the underlying mechanism of ZnN
on muscle growth and meat quality, we conducted the tran-
scriptome analysis on the breast muscle of broilers. KEGG
pathway enrichment analysis revealed that signaling path-
ways such as adhesion, backbone regulation of actin, bio-
synthesis of amino acids, MAPK, MTOR, and AMPK were
significantly enriched. Actin is involved in contraction and
myoblast differentiation [51]. MTOR is a vital regulator of
animal growth and plays an important regulatory role in the
proliferation, growth, and differentiation of cells [52]. Our
results indicated that adding ZnN to the diet could increase
the expression of MTOR in breast muscle. Mitogen-acti-
vated protein kinase (MAPK) signaling pathway regulates
multiple cellular processes such as cell division, differentia-
tion, and release of inflammatory mediators [53]. It induces
protein synthesis and promotes skeletal muscle growth and
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CON vs ZnN-60

Gene percent Gene percent

ZnS vs ZnN-60

1:1 molar ratio; ZnA is zinc chelated with methionine from hydro-
lyzed feather meal. CON group, basal diet; ZnN-30, 60, 90, and
120 groups, basal diet with 30, 60, 90, and 120 mg zinc kg! added
as ZnN; ZnS group, basal diet with 120 mg zinc kg~' added as
ZnS0,H,0; ZnA group, basal diet with 30 mg zinc kg™' added as
ZnA

hypertrophy [54]. Studies have shown that ZIP7-mediated
intracellular zinc release can promote the participation of
pathways such as MAPK, mTOR, and PI3K-Akt in cell
growth and proliferation [55]. Adenosine 5’-monophosphate
activated protein kinase (AMPK) is an important kinase that
regulates energy homeostasis, and can provide energy for
skeletal muscle growth and differentiation [56]. The MAPK
and mTOR pathways are interdependent during muscle
growth regulation [57], and the signaling pathways related
to muscle development and energy metabolism interact to
jointly regulate muscle growth and development.

In conclusion, zinc amino acid complexes could improve
growth performance, tissue zinc concentration, and regulate
breast muscle development.
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